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1. Introduction

The open sting tachyon condensation on unstable D-branes have been intensively investi-

gated in the past decade [1, 2]. Among them, the exact solutions of the tachyon condensa-

tion, were found in the boundary string field theory1 [3 – 7] or in the boundary state [8] on

Rr.2 Those solutions include the topologically non-trivial solutions, for example, the kink

or the vortex, which represent lower dimensional D-branes, with codimension one and two,

respectively. This constructions of lower dimensional D-branes from unstable D-branes by

the tachyon condensation were known as the decent relations [1]. On the other hand, we

can construct higher dimensional D-branes from lower dimensional unstable D-branes, like

the matrix models, by the tachyon condensation on Rr [12 – 14], which were known as the

ascent relations.

Since Rr is topologically trivial and non-compact, there is no winding modes and the

solutions in the boundary string field theory can have a trivial bundle. Since the torus is

simplest non trivial compact manifold, the study of the tachyon condensation on torus will

be interesting.3 However, it will be very difficult to find an exact solution of a soliton on a

D−D-brane pair on a torus. To be explicit, let us consider a vortex soliton of the tachyon

of a D2−D2-brane pair on T 2. This soliton will represent a D0-brane. Since the torus is

an orbifold of R2, it seems easy to construct such soliton, however, the orbifolding of the

1Recently, the exact solution in the Witten’s cubic string field theory for the bosonic string was found

in [9]. it may represent a closed string vacuum.
2Recently, the boundary string field theory was reconstructed via the boundary state [10, 11].
3On a torus with the self dual radius, an exact solution of the tachyon condensation of a D−D-brane pairs

was given in [1, 15] by the marginal deformations (the “tachyon” is massless). This solution corresponds

to the lower dimensional D−D-brane systems. By the marginal deformation, we always has a D−D-brane

or non BPS D-branes which do not have net D-brane charges because of the charge conservation. In this

paper we will study the soliton with a net D-brane charge.
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solution is not straightforward. Actually, on R2 the D0-brane solution is represented by a

following non-periodic configuration:

T = u(ξ1 + iξ2), (u→ ∞),

A(1)
µ = A(2)

µ = 0, (µ = 1, 2), (1.1)

in the boundary string field theory. Here T is the tachyon and A
(1)
µ and A

(2)
µ are the

gauge fields on the D2-brane and anti-D2-brane, respectively. This is the exact solution

of the equations of motion in the u → ∞ limit. Obviously, it is difficult to extend this

solution (1.1) on R2 to a solution on T 2 = R2/Z2 because of the non periodicity of (1.1).4

Moreover, the gauge fields can not be trivial on T 2 because it is a compact space. It will be

interesting, but, highly non-trivial to construct a vortex solution (DµT ∼ 0) with non-zero

A
(i)
µ .

In this paper, we consider the tachyon condensation of D−D-brane pairs on a torus

and find exact solutions, which have a net D-brane charge, in the boundary string field

theory or the boundary state formalism. Our construction uses infinitely many D−D-brane

pairs instead of a pair. By the T-dual transformation, we can change the dimensions of

the D−D-brane pairs and we will see that the soliton on the D0−D-brane pairs which

represents a D(2p)-brane is the simplest one.

As an application of the soliton solution, we can consider the Nahm-transformation [16,

17] which maps an anti-self dual gauge field (instanton) of U(N) with the instanton number

k on four dimensional torus T 4 to an anti-self dual configuration of U(k) with the instanton

number N on on a dual torus T̃ 4. In string theory, the bound state of N D(p + 4)-branes

and k Dp-branes on T 4 is given by the U(N) gauge instanton. If we introduce a probe

D(p − 4)-brane and consider the low energy limit on it, the Nahm transformation was

interpreted as the T-dual transformation [18], generalizing the ADHM(N) cases [19, 20].

Recently, the ADHM transformation was given in a D-brane setup without a probe D-brane

and nor a low energy limit [21, 22] by the method using the tachyon condensation [23, 24].

For a bound state of two different D-branes, say the D(p + q)-branes and the Dp-branes,

this method gives the equivalence between the descriptions using the D(p+ q)-branes and

using the Dp-branes. This method can be applied to T 4 case and we will see that the Nahm

transformation is naturally interpreted as this equivalence (plus the T-dual transformation).

It is worth noticing that this equivalence is exact in α′, therefore, the N D4-brane with the

k instanton on T 4 is equivalent to k D4-branes with the N instanton on the T-dual torus

T̃ 4, which has a sub-stringy size if the size of T 4 is much bigger than string scale.5

4If we take the bundle on the D2-brane as (2.7) and the trivial bundle on the anti-D2-brane, a general

tachyon field would be written as

T (ξ1, ξ2) = u

 

X

n∈Z

H

„

n+
ξ1

2πL1

«

e
i

ξ2

L2
n

!

G(x2
, x

2), (1.2)

where G(ξ1, ξ2) is a periodic function of ξµ.
5We assume we can employ off-shell boundary states, which are naive extensions of the boundary state,

as in [21, 22]. They have possibility of suffering from divergences when away from on-shell background fields.
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This paper is organized as follows. In section 2, we review how to obtain the T-dual

picture of the D0-branes on torus, according to [25]. In section 3, we give an exact solution

in the boundary string field theory of brane-anti-brane pairs on torus. We take the T-

dual of this configuration. The Nahm-transformation of the instantons is derived from the

tachyon condensation. We conclude with some discussions in section 4.

2. D0-branes on torus and T-dual

In this section, we will review how to describe D0-branes in type II superstring theory on a

(rectangular) torus as an orbifold T r = Rr/Zr, whose periodic coordinates 0 ≤ xµ < 2πRµ,

according to [25, 26] and how to take the T-dual of the D0-branes [25].

We consider only the scalars corresponding to the locations of the D0-branes in the

torus, Xµ(t), where µ = 1, . . . , r although there are many fields on the D0-branes. In

this paper, the time t is always fixed, and thus abbreviated below. If we consider the

time-independent Xµ, it can be considered as the static configuration in the A0 = 0 gauge.

Since T r = Rr/Zr, the N D-branes on tours will be equivalent to the N ×∞ D-branes

on Rr whose coordinates Xµ will be operator valued Hermite N × N matrices. Here we

regard an ∞×∞ matrix as an operator.

By the orbifolding, we need the following identification with translation operators U ′
ν

along xν which should be operator valued N ×N unitary matrices:

U ′
νX

µU ′
ν
−1

= Ω′
ν (Xµ + δµν2πRν1N )Ω′−1

ν , (2.1)

where Ω′
ν is an N × N unitary matrix, i.e. a gauge transformation of the N D-branes.

Throughout this paper, we take a convention that an index ν is not summed over except

explicitly indicated by
∑

ν . We will define Uν = Ω′−1
ν U ′

ν , then

UνX
µUν

−1 = Xµ + δµν2πRν1N . (2.2)

A representation of (2.2) is

Xµ = 2πα′

(

i
∂

∂ξµ
+ Ãµ(ξ)

)

Uν = ei
ξν

Lν , (2.3)

where Ãµ(ξ) is an N ×N matrix and

Lν =
α′

Rν
. (2.4)

Here ξν is the periodic coordinate of the T-dual torus T̃ r and 0 ≤ ξν < 2πLν and Ãµ is the

gauge field of the N Dr-branes on T̃ r.6 Note that this implies that the gauge field Ãµ(ξ)

However, the off-shell boundary states have a natural interpretation in consistency with the boundary string

field theories. Furthermore, our main concern is the on-shell configurations although finding those are not

discussed in this paper. Actually, the instanton configurations on torus is expected to be on-shell for all

order in α′ as discussed in [21, 22].
6The gauge transformation of the N D0-branes should not change the (2.2). Thus the transformation

is generated by a N ×N unitary matrix UN×N (ξ, ∂
∂ξ

) which commutes with Uν . This is actually a gauge

transformation of the N Dr-branes, i.e. a unitary matrix UN×N (ξ).
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is a connection on the T̃ r, whose component is not necessary a periodic function of ξ. If

the bundle of the N Dr-branes on T̃ r with the gauge field Ãµ(ξ) is trivial, i.e. Ãµ(ξ) is

periodic, the base of the Hilbert space is spanned by

e
−i

Pr
ν=1

“

ξνnν
Lν

”

vN , (2.5)

where nν ∈ Z and vN is a base of a N -vector. If the bundle of Dr-branes is non-trivial,

the base of the Hilbert space will be the sections of the bundle on the dual torus T̃ r.

Finally, let us consider a bound state of a D0-brane and m Dr-branes on the torus

T r. First, we sketch how to construct a Dr-brane within m D0-branes on the T-dual torus

T̃ r. We will consider r = 2 case as an example. The bound state of the D2-brane and the

D0-branes on T̃ 2 will be given by

Ã1 = 0, Ã2 = F̃ ξ1,

F̃ =
m

2πL1L2
, (2.6)

where m is an integer which is the D0-brane charge. The transition function (or the gauge

transformation) between the different patches is given by Ãµ(ξ1 + 2πL1, ξ
2) = Ω̃1ÃµΩ̃−1

1 −

i(∂µΩ̃1)Ω̃
−1
1 and Ãµ(ξ1, ξ2 + 2πL2) = Ω̃2ÃµΩ̃−1

2 − i(∂µΩ̃2)Ω̃
−1
2 where

Ω̃1 = e
i ξ2

L2 , Ω̃2 = 1. (2.7)

Note that this is the exact solution. Here an exact solution means that a solution of the

equations of motions of the D2-brane (string field theory) action including all order in

the α′ expansions, but leading order in the string coupling gs. Then, from the T-dual

map (2.3), we can read the D0-brane configuration Xµ of the bound state of the D0-brane

and the m Dr-branes on T r.

3. D0−D0 pairs on torus

In this section, we will construct a solution which is equivalent to M D(2p)-branes in the

boundary string field theory of infinitely many D0−D0-brane pairs on a torus T 2p.

First, we consider the infinitely many D0−D0-brane pairs on R2p. The solution which

is equivalent to the M D(2p)-branes R2p with gauge field Aµ(x) is

(

0 T

T † 0

)

= lim
u→∞

u Γµ ⊗ (1M×M ⊗ p̂µ −Aµ(x̂)), Xµ = 12p×2p ⊗ 1M×M ⊗ x̂µ, (3.1)

where Xµ is the transverse scalars of D0-branes and the T is the tachyon which acts on the

D0-branes and T † acts on the anti-D0-branes, which correspond to the anti-chiral spinors.

Here we have set that the anti-D0-branes has the transverse scalars with the same v.e.v

as the D0-branes. The operators x̂µ, p̂µ satisfy [x̂µ, p̂ν ] = iδµ,ν and Γµ is the Dirac gamma

matrix of SO(2p) which satisfies Γ ≡ i−pΓ1Γ2 · · ·Γ2p =

(

12p−1×2p−1 0

0 −12p−1×2p−1

)

. Note

– 4 –
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that T and Xµ act on the Dirac spinors which transformed as a fundamental representation

of the U(M) gauge symmetry on the manifold spanned by M D(2p)-branes. Thus the (3.1)

can be written as
(

0 T

T † 0

)

= lim
u→∞

u D/ , Xµ = xµ. (3.2)

Using this configuration we can construct the M D(2p)-branes with gauge field Aµ(x)

on the torus T 2p, which is spanned by 0 ≤ xµ ≤ 2πRµ, by the orbifolding of R2p. Here we

assume that Aµ(x) satisfies

Aρ(xµ + δµν2πRν) = ΩνAρ(x)Ω
−1
ν − iΩν∂ρΩ

−1
ν , (3.3)

where Ων is a transition function (or gauge transformation) on the torus. Thus the Aµ is

a gauge field on R2p which is extended from the gauge field on the torus, i.e. a pull back

connection of the map from R2p to T 2p = R2p/Z2p. The constraint for the tachyon T by

the orbifolding may be same as the constraint for transverse coordinates. Thus we require

that

UνX
µU−1

ν = Xµ + δµν2πRν1N ,

UνTU
−1
ν = T, (3.4)

where we take same Ων in (2.1) for the D0-branes and the anti-D0-branes. Then the

configuration (3.1) is consistent with the constraint (3.4) of the orbifolding if we take

Uν = Ων e
2πip̂νRν . (3.5)

This is obvious if we notice that the D0−D0-branes given by the configuration (3.1) uni-

formly distributed in R2p and the unit shift ( 3.5) is a symmetry. Note that

UρUµ = UµUρ, (3.6)

which is from the fundamental property of the transition functions.

Therefore, the configuration (3.1) with the orbifolding operator (3.5) is a consistent

configuration of the infinitely many D0−D0-brane pairs on a torus T 2p which is equivalent

to M D(2p)-branes with the gauge field Aµ(x). Since the orbifolding will consistently

truncate the equations of motion or the (on-shell) boundary state, (3.1) with the orbifolding

by the generator (3.5) will be an exact solution on the torus if we set Aµ = 0 or, for example,

an anti self-dual configuration for p = 2.7

3.1 Nahm transformation and tachyon condensation on D0−D0 pairs

If we consider M D(2p)-branes with a nontrivial gauge bundle on the torus, it is the bound

state of M D(2p)-branes and the lower dimensional D-branes, for example D0-branes. In

this case, following [23] (see also [27]) we can find a configuration of D0-branes which is

equivalent to the bound state. We will apply this to the solution on the torus and see that

the Nahm transformation naturally appears.

7It is desirable and interesting to study the solution on the torus in the boundary state formalism.
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In [23], we first take a configuration of D0−D0 pairs which represents the M D(2p)-

branes by the tachyon condensation. Then the tachyon is diagonalized by the gauge trans-

formation and then only D0-branes which corresponds to zero modes remain after the

tachyon condensation, namely the u→ ∞ limit. Then we see that the remaining D0-branes

have the transverse scalars or the matrix coordinate X̄µ is given by just a truncation of

the Chan-Patton-Hilbert space to those composed by the the zero modes only:

(

X̄µ
)i

j
= 〈 i |Xµ | j 〉 , (3.7)

where | i 〉 is a zero mode of the tachyon. This gives the D0-brane picture of the boundary

state.

For the M D(2p)-branes with a nontrivial gauge bundle on the torus, the tachyon,

(

0 T

T † 0

)

= lim
u→∞

u D/ , (3.8)

acts on Ψ(x) which is a spinor on R2p. Now we decompose a spinor on R2p into a spinor

on torus and a plain wave like the Bloch wave function:

Ψξ(x) = ei
1

2πα′ ξµxµ

ψξ(x) (3.9)

where ψξ(x) is

Uνψξ(x) = ψξ(x), (3.10)

which means that ψξ(x) is a section of the spinor bundle on T 2p and 0 ≤ ξµ < 2πLµ.

Indeed, Ψξ is the eigen state of the unitary operator Uν :

UνΨξ(x) = ei
ξνRν

α′ Ψξ(x). (3.11)

Thus any spinor Ψ(x) on R2p can be written as

Ψ(x) =

∫ 2πα′

R1

0
dξ1

∫ 2πα′

R2

0
dξ2 · · ·

∫ 2πα′

R2p

0
dξ2pe

i 1

2πα′ ξµxµ

ψξ(x), (3.12)

because any eigen state of Uν can be written as (3.9). Using this, we have

D/Ψ(x) =

∫ 2πα′

R1

0
dξ1

∫ 2πα′

R2

0
dξ2 · · ·

∫ 2πα′

R2p

0
dξ2pe

i 1

2πα′ ξµxµ

D/ ξψξ(x), (3.13)

where

D/ ξ = Γµ

(

p̂µ −Aµ(x̂) +
ξµ

2πα′

)

. (3.14)

Then, the zero modes of the tachyon, D/Ψ(x) = 0, is given by

Ψi
ξ(x) = ei

1

2πα′ ξµxµ

ψi
ξ(x) (3.15)

where ψi
ξ(x) is a zero mode of D/ ξ , i.e. it satisfies

D/ ξψ
i
ξ(x) = 0, (3.16)

– 6 –
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(i = 1, · · · ,m) and m is the number of the zero modes of D/ ξ .
8 From the index theorem [28],

we know that m does not depend on ξ. For p = 2, m is the instanton number. The zero

modes are labeled by ξ and i. We will see that the discrete eigen values of ∂
∂ξµ parameterize

mirror images of D0-branes by the Z2p orbifolding.

We normalize the zero modes as

1

2π

∫

R2p

d2pxΨi
ξ(x)

† Ψj
ξ′(x) = δ(ξ − ξ′)δij , (3.17)

which is equivalent to
∫

T 2p

d2px′ ψi
ξ(x

′)† ψj
ξ(x

′) = δij , (3.18)

where 0 ≤ x′ν ≤ 2πRν . (Because of the Euclidean nature, Ψ†Ψ is the SO(2p) invariant.)

This can been seen from

1

2π

∫

R2p

d2pxΨi
ξ(x)

† Ψj
ξ′(x)

=
1

2π

∫

T 2p

d2px′
∑

l1,··· ,l2p∈Z

exp

(

i
(x′µ + 2πRµlµ)(ξµ − ξ′µ)

2πα′

)

ψi
ξ(x)

† ψj
ξ′(x)

=

∫

T 2p

d2px′ ψi
ξ(x

′)† ψj
ξ′(x

′)2πδ(ξ − ξ′), (3.19)

where xν = x′ν+2πRν lν and we have used ψi
ξ(x) = Ω−1

ν ψi
ξ(x

′) which implies ψi
ξ(x)

† ψj
ξ′(x) =

ψi
ξ(x

′)† ψj
ξ′(x

′).

Now we can evaluate the coordinate X̄µ ofm D0-branes corresponding to the remaining

m zero modes:

(

X̄µ
)i,ξ

j,ξ′
=

1

2π

∫

R2p

d2pxΨi
ξ(x)

† xµ Ψj
ξ′(x)

= α′

∫

R2p

d2pxΨi
ξ(x)

†

(

−i
∂

∂ξ′µ
Ψj

ξ′(x) + iei
1

2πα′ ξ
′
µxµ ∂

∂ξ′µ
ψj

ξ′(x)

)

= 2πα′

(

iδij
∂

∂ξµ
+
(

Ãµ(ξ)
)i

j

)

δ(ξ − ξ′), (3.20)

where
(

Ãµ(ξ)
)i

j
= i

∫

T 2p

d2px′ ψi
ξ(x

′)†
∂

∂ξµ
ψj

ξ(x
′). (3.21)

This means that

〈 ξ, i | X̄µ = 2πα′

(

iδij
∂

∂ξµ
+
(

Ãµ(ξ)
)i

j

)

〈 ξ, j | , (3.22)

thus X̄µ = 2πα′

(

iδij
∂

∂ξµ +
(

Ãµ(ξ)
)i

j

)

in this basis. Moreover, from

UνΨ
i
ξ(x) = ei

ξν

Lν Ψi
ξ(x), (3.23)

8Here we assume that m > 0 and the all zero modes have positive chirality, i.e. Γψi
ξ(x) = ψi

ξ(x),

which means that only the m D0-branes are remained and all anti-D0-branes disappear after the tachyon

condensation. However, this assumptions is not essential, even for cases with zero modes of both chiralities,

as discussed in [21, 22].
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for Uν = Ων e
2πip̂νRν , we find an equivalence between the N D(2p)-branes on the T 2p

with the gauge field Aµ(x) and the m D0-branes on the same T 2p with the coordinates

X̄µ (3.20). From the relation (2.3), the T-dual of the latter D0-branes is m D(2p)-branes

on the dual torus T̃ 2p with the gauge field Ãµ(ξ). Note that

m =

∫

T 2p

Tr e
F
2π , N =

∫

T̃ 2p

Tr e
F̃
2π , (3.24)

are followed from the index theorem.

Therefore, we find an equivalence between the N D(2p)-branes on the T 2p with the

gauge field Aµ(x) and the m D(2p)-branes on the dual torus T̃ 2p with the gauge field Ãµ(ξ)

given by (3.21) using the Dirac zero modes (3.16).

The transition function for Ãµ(ξ) is given by

(

Ω̃ν(ξ)
)i

j
=

∫

R2p

d2pxΨi
ξ(x)

† Ψj
ξ′(x) =

∫

T 2p

d2px′ ψi
ξ(x

′)† ψ(ν)j
ξ(x

′), (3.25)

where

ξ′µ = ξµ + 2πδµνLν , (3.26)

and

ψ(ν)j

ξ(x) = e
Lνxν

α′ ψj
ξ′(x), (3.27)

which satisfies D/ ξ ψ
(ν)j

ξ(x) = 0, thus a linear combinations of ψi
ξ(x).

If we take p = 2 and Aµ(x) is anti-self dual, the formula (3.21) is indeed the Nahm

transformation of [16, 17], which is a generalization of the formula given in [29] for the

ADHM case. We note that the Nahm transformation can be viewed as a combination

of the two different equivalences: (1) the T-dual and (2) the equivalence between the N

D4-brane with Aµ and the m D0-branes with X̄µ.

3.2 T-dual of the D0−D0-brane pairs

Let us take the T-dual of the D(2p)-brane solution on the torus, (3.1). Now we assume that

the bundle on the D(2p)-brane is trivial and Aµ(x) = ζµ/(2πα
′), where ζµ is a constant.

In this case, Uν is just a translation operator. As we have seen, the Hilbert space of the

Chan-Paton index is spanned by the spinors on the R2p and any spinor Ψ(x) on R2p can

be written as

Ψ(x) =

∫ 2πα′

R1

0
dξ1

∫ 2πα′

R2

0
dξ2 · · ·

∫ 2πα′

R2p

0
dξ2p

∑

nµ∈Z

e
i 1

2πα′

“

ξµ+ 2πα′

Rµ
nµ

”

xµ

ψ(ξ, n)

=

∫ 2πα′

R1

0
dξ1

∫ 2πα′

R2

0
dξ2 · · ·

∫ 2πα′

R2p

0
dξ2pe

i 1

2πα′ ξµxµ

ψξ(x), (3.28)

which is just a Fourier transformation with the momentum pµ = 1
2πα′

(

ξµ + 2πα′

Rµ
nµ

)

. Here

we defined ψξ(x) =
∑

nµ∈Z
e
i 1

2πα′

2πα′

Rµ
nµxµ

ψ(ξ, n) which is periodic, namely, Uνψξ(x) =

ψξ(x) and ψ(ξ, n) is a constant spinor. Then,

Ψξ,n(x) = e
i 1

2πα′

“

ξµ+ 2πα′

Rµ
nµ

”

xµ

ψ, (3.29)
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is a basis of the Hilbert space labeled by {ξ, n} and the spinor index of a constant spinor

ψ. We note that Ψξ,n(x) is an eigen state of Uν ,

UνΨξ,n(x) = ei
Rν
α′ ξν Ψξ,n(x) (3.30)

and also an eigen state of the tachyon T = limu→∞ u D/ ,

D/ Ψξ,n(x) =
1

2πα′
Γµ

(

ξµ +
2πα′

Rµ
nµ − ζµ

)

Ψξ,n(x). (3.31)

In this basis, Xµ = x̂µ is represented as 2πα′i ∂
∂ξµ . This means that the gauge fields of the

D(2p)-branes and anti-D(2p)-branes in the T-dual picture vanish.

Now we expect that the T-dual of the tachyon will be given by the tachyon in the above

basis of the Chan-Paton bundle since we regard the torus as the orbifold of R2p. Therefore,

in the T-dual picture, this system is equivalent to infinitely many pairs of D(2p)-brane and

anti-D(2p)-brane, labeled by {nµ} ∈ Z2p, on the dual torus T̃ 2p. The tachyon condensation

is given by

T̃ (ξ) = ũΓµ (ξµ − ζµ + 2πLµnµ) , (3.32)

which is diagonal in nµ and Ãµ = 0. Here we defined ũ = u
2πα′ . We interpreted that the

{ξµ} parameterize the world volume of the pairs of D2−D2-branes, on the other hand,

{nµ} are the Chan-Paton indices. ζµ is the location of the a solitonic D0-branes on the

dual torus T̃ 2p.

Since Ψξ′,n = Ψξ,n′, where ξ′µ = ξµ+2πδµνLν and n′µ = nµ+δµν , the transition function

of the infinitely many pairs of D(2p)-branes and anti-D(2p)-branes in this T-dual picture,

is given by

Ω̃ν = Unµ→nµ+δµ,ν , (3.33)

where Unµ→nµ+δµ,ν is the unitary operator which maps Ψξ,n to Ψξ,n′. Thus the

tachyon (3.32) is a consistent configuration on the dual torus although it is not periodic.9

We note that the configuration (3.8) of the D0−D0 pairs is more convenient than its

T-dual configuration (3.32) of D(2p)-anti-D(2p) pairs, especially, for a configuration with

a non-trivial Aµ(x). For a non-trivial Aµ(x), from a spinor ψξ,n(x) stisfying

Uνψξ,n(x) = ψξ,n(x), D/ ξψξ,n(x) = Eξ,nψξ,n(x), (3.34)

a basis is given by

Ψξ,n(x) = ei
1

2πα′ ξµxµ

ψξ,n(x), (3.35)

where Ψξ,n(x) is an eigen state of Uν and D/ . Then, the tachyon configuration of D(2p)-

anti-D(2p) pairs on ˜T 2p is implicitly given by

T̃ (ξ) = u Eξ,n (3.36)

in this basis.

9We thank Koji Hashimoto for suggesting this solution.
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Let us take the large radius limit of the torus or the T-dual torus. If we take the

Lµ → ∞, then only the pair of D(2p)-brane and anti-D(2p)-brane with nµ = 0 will remain

and the configuration (3.32) becomes

T̃ (ξ) = ũγµ (ξµ − ζµ) , (3.37)

which is just the Atiyah-Bott-Shapiro solution [5 – 7] for the decent relation. On the other

hand, if we take the Rµ → ∞, the original infinitely many D0−D0-brane pairs on T r

become those on Rr and the solution (3.1) is same as the solution for the ascent relation

found in [12, 13]. Thus we can say that on the torus the two solutionsfor the decent

relation (3.37) and the ascent relation (3.1) are T-dual each other.

Finally, we will comment on the classification of the D-branes by the K-theory. The

configuration (3.37) for the decent relation is related to the K-theory (using the infinitely

many D9−D9 pairs [30, 31]). On the other hand, (3.1) represnts the (analytic) K-homology

class in [13]. Therefore, we expext that the T-dual maps the K-theory to the analytic K-

homology. However, the winding modes are neglected to obtain the analytic K-homology by

assuming the size of the compactified manifold is very large in [13] although the winding

modes are important for the T-dual picture. The duality of the KK-theory discussed

in [32] will be important to study the role of the widing modes. It would be interesting to

investigate the relation to it further.

4. Concluding remarks

In this paper, we found an exact solution, with a nonzero net D-brane charge, of the

tachyon condesation in the boundary string field theory of brane-anti-brane pairs on torus.

The Nahm-transformation of the instantons was derived from this tachyon condensation.

We also found the T-dual configutration of this.

There are several interesting future directions. Since our method is not restricted to

the instanton (i.e. p = 2) case, it will be interesting to study the Nahm transformation for

D0-D8 or D0-D6 cases. Morevoer, the BPS properties are not (explicitly) assumed in this

paper. Therefore, the non-BPS cases, for exampole models dicussed in [33 – 35] are also

covered in thie paper. To extend our result to other orbifolds, like ALE spaces, are also

interesting.

In this paper, we do not explicitly use the boundary state formalism though we believe

the exact solutions in the boundary string field theory can be mapped to the boudnary

state. (The marginal deformation case [15] was studied in [36].) It would be desired to do

it explicitly.
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